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Aimtract-A one-dimensional transient two-phase, two-component flow in a porous medium is investigated 
analytically. The flow is described by the use of a continuity equation for each component, a momentum 
equation for each phase, the frrst law of thermodynamics, state equations, and relations for the transport 
properties. Local th~~~arn~ ~uili~~ is assumed. ‘Ibe effects of condensation and evaporation 
are included. ‘lbe analysis shows that the flow resulting from a step change in the state at the surface of a 
uniform semi-infinite porous medium may be described by a single variable, which is a simple function of 
position and time. Under other conditions, positiou and time must be separately specified to determine the 
state of the mixture, Results of calculations relevant to the flow of cavity gas folIowing an underground 

nuclear explosion are givan. 

NOMENCLATURE 

inlcmal energy per unit mass f 
enthalpy per unit mass ; 

k permeability ; 

km relative permeability ; 
L, length of porous bed ; 
P, pressure ; 
P*l inlet pressure ; 
S, saturation; 
& time ; 
u, apparent speed : 
x, position coordinate in direction of flow ; 
E, porosity ; 
c1, viscosity ; 
fl*, viscosity of air at ambient temperature; 
P, density. 

Dimensionless quantities 
P, dimensionless pressure, p/p* ; 
X, dimensionless position x/L; 
e, similarity variable, X/2,/r ; 

T’, dimensionless time, kp*t/.sp*L?. 

t Work pcrf~rmcd under the auspices of the U.S. Atomic 
Energy Commission. 

$ Present address: Department of Mechanical and 
Industrial Engineering, University of Illinois at Urbana- 
Champaign. Urbana, Illinois 61801, U.S.A. 

Subscripts 
4 air; 
f, liquid ; 
m air-water vapor mixture ; 
s, solid ; 

; 
water vapor ; 
air at ambient conditions. 

THE CAVITY formed by an underground nuclear 
explosion, ceases growing about a tenth of a 
second after the explosion. The vapor in the 
cavity consists predominately of a mixture of 
rack gas and steam at a temperature of a few 
thousand degrees Kelvin and a pressure near the 
overburden pressure. The cavity gas ordinarily 
remains at temperatures and pressures of this 
magnitude until collapse of the cavity, which 
usually occurs after several minuted. During this 
periad, should the cavity gas have access to 
either the porous medium surrounding the 
cavity or the stemming calumn, the gas will flow 
into the porous material. The purpose of this 
paper is to present the results of analysis of 
such a transient multiphase multicomponent 
flow. 
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FORMULATION OF THE PROBLEM 

In recent years, the analysis of transient 
multiphase flow in porous media has received 
considerable attention. The subject has been of 
particular interest to the petroleum industry 
because of its importance to the secondary 
recovery of petroleum. As a result, most of the 
available literature on such flows, e.g. [l-12], 
deals with conditions that may be found in 
petroleum reservoirs. Multiphase flow resulting 
from an underground nuclear explosion, how- 
ever, passes through considerably larger ranges 
of temperature and pressure. Consequently, 
assumptions in these studies usually prohibit 
their application to the problem of interest here. 
For example, the fluids are ordinarily considered 
incompressible [l-4] or barotropic [5-lo]. 
Although such restrictive assumptions are not 
made in [ll, 121, the formulation of the first 
law of thermodynamics is in error in both cases. 

The flow will be assumed to be a two-phase 
two-component flow. When applying the 
analysis to flow of the cavity gas, the two 
components are taken to be air and water. Air is 
initially present in the porous medium. The gas 
flowing from the cavity is predominantly steam. 
Because the temperature of the gas entering the 
porous medium is considerably higher than the 
ambient temperature of the medium, conden- 
sation will occur and a two-phase flow results. 

The equations governing this flow may be 
formulated in a straight forward manner. The 
equations will be written for a one-dimensional 
flow, the extension to more dimensions being 
obvious. 

Conservation of mass is expressed by a 
continuity equation for each component. For 
air, this equation is 

Here, air is assumed to be present only in the 
vapor phase. Any air dissolved in the liquid 
phase is negligible. x is the distance in the 
direction of flow from the surface of the porous 

medium. t is the time. pd is the mass density of the 
air. u, is the apparent velocity, i.e. volume flow 
rate/unit area normal to flow, of the mixture 
of air and water vapor. The two phases will 
ordinarily have different apparent velocities. 
S,,, is the saturation of the vapor phase. The 
saturation of a phase is the void volume fraction 
occupied by that phase. 

The corresponding equation for water is 

; (PPr + P”klJ + &$ (PJr + P”hJ = 0 (2) 

The additional terms result from the presence of 
water in both phases. The subscript 1 refers to 
the liquid and the subscript o refers to water 
vapor. The air and water vapor have the same 
apparent velocity, diffusion being neglected. 

The flow results from the pressure gradient 
in the medium. Flow due to gravity is not 
considered. For sufficiently small Reynolds 
numbers, so that inertial effects are negligible, 
the apparent velocity of a phase will be given by 
Darcy’s law with the permeability reduced by 
the presence of the other phase. 

(31 

Lk dp 
%I= ---. 

Pm ax 
(41 

A characteristic Reynolds number for this flow 
is calculated later. 

The reduction in permeability is expressed by 
use of the relative permeability. k,, and k,, are 
the relative permeabilities of the liquid and the 
vapor mixture, respectively. The relative perme- 
ability of a phase is the ratio of the effective 
permeability for the phase to the absolute 
permeability, k, of the medium. Although not 
strictly functions of saturation only, the relative 
permeabilities depend most strongly on 
saturation and are ordinarily taken to depend 
only on saturation. The functional form of the 
dependence is different for the two phases 
because of the wetting of the liquid phase. 
p and p are viscosity and pressure respectively. 
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For an isothermal flow, these equations, 
together with state and transport property 
relations and the initial and boundary conditions, 
would be sufficient to describe the flow. A 
noncondensible gas flow, under the conditions 
considered here, could be treated as isothermal 
with very little loss of accuracy. The temperature 
of the incoming gas from the cavity is very much 
larger than the initial temperature of the porous 
medium. As the gas flows, the temperature at any 
location in the medium will rise. However, 
before this change in temperature can become 
appreciable at a position, the mass of gas 
passing that position must be of a magnitude 
near to the mass of the solid lying between that 
position and the inlet. Consequently, for non- 
condensible gas flow, the time required to 
produce significant changes in the temperature 
is extremely long compared to the time in 
which changes in pressure become significant. 
This gas flow is, for all practical purposes, 
isothermal, since the gas rapidly comes to the 
bed temperature. Morrison [13] has analyzed 
transient ideal gas flow under these conditions. 

In the flow of interest here, however, con- 
densation will occur. The temperature in the 
porous medium will rise more rapidly as a 
result. Moreover, the partial pressure of the 
water vapor cannot exceed the saturation 
pressure at the local temperature. Until the 
temperature at a position begins to change 
significantly, the steam will exert little pressure 
there. We conclude that, in this case, the local 
temperature and fluid pressure will begin to 
change rapidly at the same time and that this 
change will result from local condensation of the 
steam. 

In order to describe this flow, it is necessary 
to apply the first law of thermodynamics. 
Because the response time for local heat transfer 
from the fluid to the solid grains is several orders 
of magnitude smaller than the times of interest, 
this response time may be neglected. Thus, the 
fluid and solid temperatures are assumed equal. 
This condition of local thermodynamic equili- 
brium simplifies the formulation of first law, 

avoids ambiguities in the designation of local 
temperatures, and makes a model for heat 
transfer between fluid and solid superfluous. 
The assumption of temperature equality is 
common in analysis of flows through beds of 
small particles e.g. aid. [ 1 l-151. 

For an elemental slab with surfaces normal to 
the direction of flow, the first law is written 

e and h are the internal energy and enthalpy per 
unit mass, respectively. The subscript s refers 
to the solid. Changes in kinetic energy are 
neglected in agreement with the low Reynolds 
number restriction implicit in the use of Darcy’s 
law. Conduction of heat through the bed is 
neglected in comparison to the heat transfer by 
the motion of the fluid. This, too, is a frequently 
used assumption in the analysis of flow through 
porousmedia [ 16,171. The thermal conductivity 
of unconsolidated sand [ 183 is sufficiently small 
that this mechanism of heat transfer becomes 
important only after long times as the rate .of 
fluid flow decreases. 

Defining a few dimensionless quantities 
facilitates the numerical solution of these 
equations and permits easy comparison of the 
results with results of corresponding ideal gas 
flows. Accordingly, we define a dimensionless 
position, 

x = x/L (6) 

a dimensionless pressure, 

p = P/P* (7) 

and a dimensionless time 

z = kp't/ep*L? . (8) 

L is the length of the bed. p* is the highest 
pressure at the inlet (simply the inlet pressure 



2334 FRANK .4. MORRISON. JR. 

for the step change boundary condition 
employed here) and ,u* is the viscosity of the air 
in the medium at ambient conditions. If the 
permeability and porosity of the medium are 
not uniform and constant, then reference values 
of these properties should also be used. We will 
not consider such variations here. The difference 
between the definition of r used here and that 
used in [13] is small when the inlet pressure is 
large. Results of the two analyses may be readily 
compared. 

Elimination of the apparent velocities from 
the continuity equations and the fust law is 
accomplished by substitution of the two Darcy’s 
law expressions into these equations. With these 
substitutions, we obtain relations that contain 
only thermodynamic and transport properties 
as dependent variables. Making these substitu- 
tions and introducing the dimensionless 
variables, we obtain for air continuity, 

for water continuity 

and for the first law 

+ PJnrev + GLe. . (11) 

Equations(g)4 11) govern the one-dimensional 
transient two-phase two-component flow 
through a finite porous bed with uniform 
permeability and porosity. Initial conditions, 
boundary conditions, state and transport pro- 
perties remain to be specified. 

Boundary conditions at the inlet to the porous 
medium are given by the state of the gas within 

the cavity. In an underground nuclear experi- 
ment, the cavity pressure attains a value near the 
overburden pressure after cessation of cavity 
growth. The temperature in the cavity is of the 
order of a few thousand degrees Kelvin. Cavity 
conditions then ordinarily change slowly until 
the collapse of the cavity. Cavity collapse may 
occur several minutes after the detonation. 
Olsen [19] describes the cavity pressure and 
temperature history resulting from an under- 
ground nuclear experiment in alluvium 

It is convenient to consider idealized boundary 
conditions corresponding to step changes of 
cavity temperature and pressure to constant 
values. Results of flow calculations, using step 
change boundary conditions, can be presented 
in a particularly simple and useful form. The 
advantage extends until such time as significant 
property changes begin to occur near the other 
end of the porous medium. 

It we restrict our attention to those times 
when the effects of flow from the cavity cause 
only insignificant changes at the far boundary, 
the far boundary may be removed and the porous 
medium considered to be semi-infinite. The time 
during which the effect of a distant boundary is 
negligible may be easily estimated from the 
resulting calculations. A numerical example is 
presented later. 

The advantage of considering flow in a semi- 
infinite medium resulting from a step change in 
the inlet conditions is due to the existence of a 
similar solution. Defining a dimensionless 
variable 

x I 

-P=z J(-> &p* 

lCp*t 
(12) 

we find that the partial differential equations 
(9)-(11) describing the flow may be written as 
ordinary differential equations in the indepen- 
dent variable, 8. The only restriction is that all 
dependent variables must be functions solely of 
the local thermodynamic state. No property 
may be taken, a priori, to have an explicit 
dependence on either position or time. In terms 
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of the similarity variable, equations (9)-(11) 
then become 

(13) 

and 

+ 2e%,s* + PI&n) = 0 (14) 
dti 

\ 
+ p,&e,, + p.S,e, J = 0 (15) 

respectively. 
Boundary conditions at the cavity-medium 

interface correspondto conditions at 8 equal to 
zero. Only step change boundary conditions 
may be expressed in this manner. A similar 
solution does not exist for less idealized cavity 
conditions. In those cases, the local thermo- 
dynamic state in the medium is not a function of 
the single variable, 6, but depends on position 
and time separately. 

Initial conditions in the medium correspond 
to conditions as 8 goes to infinity. Only uniform 
initial conditions in a semi-infinite medium may 
be so expressed. Note that the length of the bed, 
present in the definitions, (6) and (8), of dimen- 
sionless position and time, does not appear in 
the definition (12) of 8. Because the changes of 
state become quite small for sufficiently large 
finite values of 0, the results may be applied to 
flow in finite beds for signitkant periods of time. 

The solution of the governing set of equations, 
(9)-(11) or (13)-(15), is best accomplished by the 
use of numerical techniques. One may readily 
demonstrate that a non-trivial closed form 
analytical solution in terms of well-tabulated 
functions does not exist. If we consider only the 
relatively simple special case of isothermal ideal 
gas, then the flow is governed by equation (13) 

alone since no water is present and the tem- 
perature is constant. In this limiting case, 
equation (13) can be considerably simplified. 
With only a single phase present, the relative per- 
meability and saturation are each unity. When 
the temperature is constant and no water vapor 
is present, 15. is everywhere equal to p*. Finally, 
the air density is proportional to the pressure 
and equation (13) reduces to 

(16) 

Using the integral transformation of von Mises 
[20], this equation may be transformed to 
Blasius equation. Because we obtain Blasius 
equation in this limiting case, we verify that 
closed form solutions may not be obtained for 
the flows governed by equations (13)-(15). 

NUMERICAL SOLUTION 

The existence of a similar solution does not 
imply that the ordinary difkrantial equations 
in the similarity variable are easier to solve 
numerically than the partial differential 
equations which have position and time as 
independent variables Because any advantage 
in numerically solving the ordinary differential 
equations is not apparent, and because a 
programtosolvethepartialdifTerentialequations 
can be used under less restrictive conditions, a 
program was written to solve the partial 
differential equations (9)-(H). Results of cal- 
culations using this program may be presented 
in the similar form simply by using the value of 
8 corresponding to the values of X and T. The 
program is explicit and self-starting The ftite 
difference expressions employed have truncation 
errors of the order of the step size. Use of higher 
order expressions results in the appearance of a 
Gibbs phenomenon because of shocklike features 
of the flow. 

The solution of equations (9)-(11) is ac- 
complished by first calculating the ftite 
difference approximations of the derivatives on 
the left hand sides of these equations. The 
equations are then numerically integrated in 
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time for one time step. This yields values of the 
three quantities in parentheses on the right hand 
sides of equations (9)+1) at the next discrete 
value of time. In accordance with Gibbs’ phase 
rule, three such quantities are necessary and 
sufficient information to determine the state of 
the mixture, including the amounts of water 
present as liquid and as vapor. 

If the water present at a location is a super- 
heated vapor, then the expressions for the three 
calculated quantities are significantly simplified 
by setting the water saturation and vapor mixture 
saturation equal to zero and one, respectively. 
Determination of the state is then straight- 
forward. If the calculated values of the three 
quantities are inconsistent with a superheated 
water state, the system contains a mixture of 
saturated liquid and saturated vapor. The state 
is then determined iteratively by using successive 
linear interpolation to find the temperature. 
Saturation properties, the relations for air and 
solid internal energies, and the quantity deter- 
mined from equation (9) are substituted into the 
expressions for the quantities that were found by 
integration of equations (10) and (11). Two 
estimates of the water saturation result. The 
iteration proceeds toward the temperature at 
which the water saturation estimates agree, 
yielding the state of the system. 

Subsidiary equations to calculate state and 
transport properties must also be used. Air is 
considered to be an ideal gas with a variable 
specific heat. The viscosity of air is considered 
to be a function only of temperature and is 
calculated using an empirical correlation given 
by Hilsenrath and Touloukian [21]. 

Because of limitations on computation time, 
the model for water properties is simpler, but 
less accurate, than other formulations, e.g. [22], 
generally available. The pressure of saturated 
vapor is calculated using the relation of Keenan 
et al. [23]. The vapor is assumed to obey 
Clausius equation of state. The constant in the 
Clausius equation of state is chosen SO that 
calculated values of the density of saturated 
vapor agree well with tabulated values. The 

agreement, of course, is poor in the neighborhood 
of the critical point. A relation given by Keenan 
and Keyes [24] is used to determine the density 
of saturated liquid. Variable specific heats are 
used for liquid and vapor. The viscosities of 
liquid water and steam are taken to be functions 
only of temperature. The viscosity of the liquid 
is very accurately represented in the temperature 
range of interest by taking this viscosity to be 
proportional to the inverse Celsius temperature. 
The empirical correlation of Hilsenrath and 
Touloukian [21] for steam viscosity is used. 
Note that the value 33.15 appearing in the 
correlation in [21] is a misprint and should 
read 33150. 

The porous medium is considered incom- 
pressiblewithconstant specific heat,permeability 
and porosity. The viscosity of the air-water 
vapor mixture is calculated from the viscosities. 
molecular weights and mole fractions of the 
two species. The relation for the mixture 
viscbsity is due to Wilke [25]. 

The relative permeabilities of the liquid and 
vapor phases are calculated using relations 
proposed by Wyllie and Gardner [26] for liquid 
and gas flow in porous materials. The relations 
of Wyllie and Gardner have been simplified by 
assuming constant capillary pressure. The 
relative permeabilities are taken to be functions 
only of saturation. W hen, because ofevaporation. 
the water saturation becomes less than the 
“irreducible” water saturation, the relative 
permeabilities of the liquid and vapor phases are 
taken to be zero and one, respectively. The 
resulting relative permeability curves lie within 
the broad band of experimental results given by 
Wyckoff and Botset [273 for flow of gas-liquid 
mixtures through unconsolidated sand. 

RESULTS OF SAMPLE CALCULATION 

As an example of the type of flow that would 
result from an underground nuclear detonation. 
we may consider idealized cavity conditions 
based on the measurements of Olsen [ 191. The 
cavity pressure is taken to be a suddenly applied 
constant pressure of 45 bars. The cavity tem- 
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perature is taken to be 1710°K. These values are 
in good agreement with values deduced for the 
Rainier event from examination of core samples 
1281. Water in the cavity is superheated under 
these conditions. Since any rock vapor will 
rapidly condense, the gas in the cavity may be 
considered to be predominately steam. In the 
example, the assumed cavity gas composition is 
90 % steam and 10 % air by mass. 

The initial temperature of the porous medium 
is chosen to be 310°K. The porosity of the 
medium is 035 and the medium is assumed to be 
initially dry. 

The results of numerical calculations of flow 
under these conditions are shown in Figs. 14. 
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FIG. 1. Pressure distribution in infinite medium. 

The abscissae of Figs. l-3 have identical scales. 
These figures show the nature of the flow in the 
region where effects of condensation, evapora- 
tion and multiphase flow are important. Figure 4 
shows the pressure distribution over a larger 
range and, for comparison, shows results of 
calculations for isothermal ideal gas flows. 
Further discussion of Fig. 4 is deferred until 
consideration of Figs. l-3 is completed. 

The nature of the flow in the region where the 
presence of water is important is perhaps best 
perceived by simultaneously considering Figs. 
1-3, which show pressure and partial pressure, 
water saturation, and temperature distributions, 
respectively.. Since the properties are shown as 
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FIG. 2. Water saturation distribution in infinite medium. 
e 

003 0.10 
e 

FIG. 3. Temperature distribution in infinite medium. 
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FIG. 4. Pressure distribution in inl‘inite medium 
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functions of the similarity variable, 8, these 
curves represent the spatial distributions of 
these properties at any time. Given a time, the 
scale of the abscissae may be converted to the 
corresponding linear scale showing distance 
from the inlet. Values of position are determined 
by reference to the definition of 0, equation (12). 
Conversely, these figures may be used to show 
the temporal variation of state at any given 
location. This transformation is nonlinear as 
equation (12) shows. 

The flow may be characterized as having 
several distinct regimes. Nearest the inlet to the 
porous bed, the water exists as a superheated 
vapor. In the example shown, this regime 
extends from the inlet, where 8 is equal to zero, to 
a value of 19 roughly equal to 002. Because no 
liquid is present, the water saturation, shown in 
Fig. 2, is zero here. The decrease in total pressure 
and partial pressure, as seen in Fig. 1, is ac- 
companied by the decrease in temperature 
shown in Fig. 3. 

The flow then enters a second regime where a 
mixture of liquid and water vapor is present. 
The temperature is relatively constant through 
most of this regime, changing slowly in the 
region bounded by 0 equal to 002 and O-06. 
Changes in the partial pressure of the water 
vapor here correspond to changes of the 
saturation pressure with temperature. The 
change in total pressure is largely determined by 
the change of the water vapor pressure. The 
water saturation changes relatively slowly 
through most of this region. The positive slope of 
the water saturation curve indicates that the 
fractional pore volume occupied by liquid at a 
bed position in this region decreases with time 
due to evaporation and the flow of liquid 
towards regions of lower pressure. 

From 0 approximately equal to 006 to 8 
nearly equal to 008, the temperature of the bed 
again decreases rapidly with distance from the 
inlet. At tl near 0.08, the temperature is essentially 
the initial bed temperature. The increase in 
temperature with time at a bed location in 
this region is due to the motion of liquid 

and condensation of the vapor. The vapor 
condenses rapidly as it enters this cooler 
region. The appearance of a sharp conden- 
sation front or water saturation front, as 
in Fig. 2, is commonly encountered in the steam 
or water flooding of petroleum reservoirs, e.g. 
vid. [29]. After this sudden appearance of liquid 
at a location producing a high water saturation, 
the water saturation then decreases with in- 
creasing time (or decreasing f3). The rate of 
decrease is more rapid here than in the region 
where 0 ranges from 002 to 006 because of 
the large relative permeability of the liquid in 
this range of water saturation. The rapid change 
in the vapor pressure, shown in Fig. 1, results 
from the temperature change. The vapor pressure 
does not vanish near the front of this region but 
has values corresponding to the saturation 
pressures at temperatures near ambient. 

Beyond the water saturation front, t? greater 
than about O-08, no liquid exists. Water, in small 
amounts, exists beyond this point as superheated 
vapor. The flow is almost entirely a flow of air. 
The heat capacity of the air is insufficient for air 
flow to cause significant changes in the local 
temperature. Consequently, the flow is, in 
essence, an isothermal ideal gas flow of air at the 
initial temperature of the porous medium. 
Referring now to Fig. 4, the pressure distribution 
of the multiphase flow described here is shown 
in dimensionless form. The saturation front is 
located at the near discontinuity in the pressure 
gradient. The pressure drop in the regime of 
isothermal gas flow is very gradual compared 
to that in the two-phase regime preceeding it. 

For ready comparison of the multiphase flow 
calculations with calculations based on an 
isothermal ideal gas model, the dimensionless 
pressure distributions for two isothermal ideal 
gas flows are also shown in Fig. 4. These flows 
correspond to ratios of inlet pressure to ambient 
pressure, N, of infinity and 45. Transient iso- 
thermal gas flow under these conditions was 
analyzed in [ 131, where a slightly different 
definition of 8 is used. Because of the absence of 
condensation, these gas flows propagate more 
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rapidly than the multiphase flow. Because the 
isothermal ideal gas calculations are much 
faster than the multiphase calculations, the ideal 
gas model provides a convenient means of 
rapidly determining a bound for the flow into 
the porous medium. 

The “interface location” whose position is 
noted on Fig. 4 is the position of the interface 
between gas from the cavity and gas originally 
in the bed when a piston-like displacement is 
posited. The location is determined by a mass 
balance. The analysis providing a simple means 
of finding the interface location is given in the 
following section. The interface for the Smite 
pressure ratio isothermal ideal gas flow is 
located at 8 equal to 081 where the dimension- 
less pressure goes abruptly to zero. 

As an example of the application of these 
analyses, let us predict the actual times and 
distances associated with certain occurrences. 
The infinite pressure ratio ideal gas analysis 
predicts the effects of the flow to extend up to 8 
equal to 081. The multiphase flow considered 
here has the water saturation front near 8 equal 
to 008. Referring to the defdtiou (12) of 8, 
choose E to be 035, p* to be 45 bars, and jP to be 
189 Crp as in the multiphase flow computations. 
Further select a permeability, k, of one darcy 
(1 darcy = 9.8 x lo-’ cm2), wical of stemming 
materials used in these tests. Substitution into 
equation (12) then gives the distance of the water 
saturation front from the cavity as 1 m, 3.2 m, 
and 25m at times of lmin, 1Omin and IOh, 
respectively. At these same times, 8 equal to 081 
corresponds to distances of roughly 10 m, 32 m 
and 250 m. 

While no single Reynolds number describes 
this flow, it is worthwhile to determine the 
Reynolds number in at least one instance so as to 
indicate the range of Reynolds number. The 
Reynolds number based on particle diameter 
can be readily calculated for the gas flow near 
the saturation front as an example. Taking a 
particle diameter of 1 mm, characteristic of 
stemming material, this Reynolds number is 
found to be approximately 05 when the front 

is 1 m from the cavity. This corresponds to a 
time of 1 min. For longer times, the Reynolds 
number at this saturation front will be smaller. 
For shorter times, the Reynolds number will of 
course’ be much larger. High Reynolds number 
effects are confined to small times and distances 
compared to those of interest. 

EXTENT OF PENJCTBATKIN 

The extent of cavity gas penetration into the 
porous medium is a matter of considerable 
interest. Fluid from the cavity clearly extends 
beyond the saturation front since all of the 
water was initially in the cavity. The extent to 
which air from the cavity has traveled is less 
obvious. The air in the medium consists of air 
initially in the medium as well as air that 
entered from the cavity. The flow will result in 
some mixing of these gases because of dead 
spaces, non-uniform velocity distribution across 
open areas, the distribution of path lengths, etc. 
Dauckwerts [30] has examined ~c~p~sible 
flows with a distribution of residence times in 
considerable detail. 

If mixing may be neglected, then the gas from 
the cavity will entirely displace the gas originally 
in the bed. This model corresponds to a piston- 
like displacement and is commonly used in the 
analysis of flows through packed bed& Air from 
the cavity would be separated from air initially 
in the porous medium by an interface which 
moves through the bed, The location of this 
interface may be determined by a simple 
extension of the method employed by the 
author in [ 131. Because of the presence of some 
mixing, the interface location cor&ponds to a 
lower bound for the distance from the inlet of 
the leading gas originating in the cavity. 

In the similarity analysis of [ 133, the interface 
location is readily determined from the pressure 
distribution because an isothermal fiow is 
barotropic. The local gas density and the 
accumulated mass of gas in any region are 
obtained directly from the pressure and its 
spatial integral in that region. Although the 
multiphase flow of interest here is not barotropic 
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throughout, it becomes barotropic in the region 
that is considered in finding the interface. This 
region is that portion of the bed that lies ahead 
of the water saturation front. As we have seen, 
the interface location must lie in this region and 
the flow there is, with considerable accuracy, an 
isothermal flow of air. 

As in [ 131, the interface location corresponds 
to that bed position where the mass of air 
originally lying closer to the inlet has been 
added to the gas lying further from the inlet 

i(p - P,Jsdx = poex. 
I 

(17) 

The subscript 0 denotes air at ambient 
conditions. 

Considering air as an ideal gas, and recogniz- 
ing that the temperature beyond the interface is 
constant and equal to the initial bed temperature, 
this relation may be written 

r (P - P,)d0 = PO0 . (18) 

The definitions of dimensionless variables are 
different from those used in [ 131. 

Although equations (13)-(15) are needed for a 
complete description of the muitiphase flow, 
equation (13) reduces to equation (16) and 
equations (14) and (15) are identically satisfied 
in the region beyond the interface. This simplifi- 
cation results immediately from the constant 
temperature and absence of water in that region. 

Equation (16) is used to evaluate the integral 
in equation (18) using substitutions analogous 
to those of [ 131. The interface location is again 
found to be the position where 

or 

dP 
a+2e=o (19) 

(20) 

The interface is located at the inflection point 
of the pressure distribution curve as in Fig. 4. 

CONCLUSIONS 

Multiphase multicomponent flow issuing from 
a cavity following an underground nuclear 
experiment has been investigated analytically. 
A program was developed and results obtained 
for the one-dimensional transient flow of air, 
steam, and water through a uniform unfractured 
porous medium. A numerical example, using 
idealized but meaningful conditions, was 
presented. 

These results were compared with those 
obtained from an isothermal ideal gas model and 
reveal the extent to vhich such an isothermal 
ideal gas model is conservative in containment 
calculations. 
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ECOULEMENT TRANSITOIRE A PLUSIEURS PHASES ET PLUSIEURS COMPOSANTS 
DANS UN MILIEU POREUX 

R&&-On Ctudie analytiquement un ecoulement transitoire unidirectionwi biphasique et a deux 
composants dam un milieu poreux. L’ecoulement est d&tit en utilisant une equation de continuite pour 
chaque composant, une equation de quantitt de mouvernent pour chaque phase, la premiere loi de la 
Thermodynamique, des equations d’Ctats et da relations pour le-s proptie& de transport. On suppose 
I’Cquilibre therrnodynamiqtte local et on inclue les effets de la condensation et de l’tvaporation. L’analyse 
montre que 1’6coulement resultant d’un changement Echelon de l&t B la surface d’un milieu poreux 
uniforme semi-infini pent 2tre d&it par une variable unique qui est tme fonction simple de la position et 
du temps. Dans d’autres conditions, position et temps peuvent Etre sp&iE6s s&par&nent pour determiner 
l’6tat du melange. On donne des r6sultats de calculs applicables a l’&oulement des gax qui m&de a une 

explosion nucl6aire souterraine. 

MEHRPHASIGE MEHRKOMPONENTEN-UBERGANGSTRGMUNG IN 
PORC)SEN MEDIEN 

Zmmnmadasanng--Eine eindimensionale, xweiphasige und aus zwei Komponcntcn zusammengesctzte 
instation& Striimung in einem poresen Medium wird analytisch untersucht. Die Str&tmng wird durch 
die Kontinuititsgleichung ftir jede einzelne Komponente, eine Momenten-Gleichung fir jede Phase, den 
ersten Hauptsatx der Tbermodynamik, Zustandsgleichungen und Bexiehungen xwischen den Transport- 
gri%sen beschrieben. chtliches thermodynamisches Gleichgewicht wird angenommen. Die Effekte von 
Kondensation und Verdampfung sind mit eingeschlossen. 

Die Untersuchung zeigt, dass die aus einer schrittweisen Zustands%nderung an der Oberflache einc* 
homogenen, halbunendlichen porosen Mediums resultierende StrBmung durch eine einxige Variable 
beschrieben werden kann, die eine einfache Funktion von Ort und Zeit ist. 
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Unter anderen Bedingungen mtissen Ort und Zeit getrennt bestimmt werden, urn den Zustand des 
Gemisches xu bestimmen. Die auf die Striimung von Gas in Kavemen ah Folge einer unterirdischen 

Atomexplosion anwendbaren Reehenergebnisse werden angegeben. 

HECTAHHOHAPHOE ,XHOVO@A~HUE MHOPOIiO~lIIOHEHTHOE 
TEUEHHE B HOPMCTbIX CPE&4S 

AmioTaqndi-AiamTwsecKki mcneHyeTcR onnomepnoe riecraqnoaapuoe m3yr@aauoe neyx- 
KOMnOHeHTHOe TeqeHne B nop~cTo91 cpene. Teseme 0mcblBaeTcK C noMoqbx0 ypaBKeKm 

Hepa3pbIBHOCTH $IFl KaHcJJOrO KOMl-lOHeHTa, ypaBHeHUK KOlIWJeCTBa ~BSI%eHkiFf JJIR Ka-%iaOfi 

$aabl, IIepBoro 3aKoKa TepMO~HHaMHKM, ypamemfi C~CT~RHEW iI cooTKoueHkfi? 3.m nepe- 

HOCH~IX CBOBCTB. HpennonaraeTcn .zoKanbtioe Tepmo~unausiqecKoe paaaoaecne. _Ianrra 
ixorta3blnaeT, 9~0 Teyeme, Bbz3Bamoe cnasKoo6paaHbru uai+rerierrneM coc~omim Ha nosepx- 

HOCTH O~HOpO&HOfi nOJIy6eCKOHe%iOfi IIOpHCTOzt CpeW, NOmeT 6bITb OIIMCaHO OaHOfi nepe- 

MeHHOfi, RBJIfUO~e#CR IXpOCTOfl +yHKQl%efi KOOpRHHaT kI BpeMeHli. B Zp)W4X yCZfOBIlHX .&?IR 

OXISiCaHIlJi COCTOfiHElfI CMeCH KOOpXSSHaTy ki BpeMH CJIeZyeT Ollpe,!JenFlTb OT;[e.lbHO. npHBO- 

RKTCH pe3yJIbTaTbl PaCseTa TeYeHHR lYl::Fl B IIOJIOCTH, HBJIfUO~erOCR C.7Ie~CTBEW.M llO~3eMHOrO 

R~eprioro B3pbIBa. 


