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Abstract—A one-dimensional transient two-phase, two-component flow in a porous medium is investigated
analytically. The flow is described by the use of a continuity equation for each component, a momentum
equation for each phase, the first law of thermodynamics, state equations, and relations for the transport
properties. Local thermodynamic equilibrium is assumed. The effects of condensation and evaporation
are included. The analysis shows that the flow resulting from a step change in the state at the surface of a
uniform semi-infinite porous medium may be described by a single variable, which is a simpie function of
position and time. Under other conditions, position and time must be separately specified to determine the
state of the mixture, Results of calculations relevant to the flow of cavity gas following an underground
nuclear explosion are given.

NOMENCLATURE
e, inicrnal energy per unit mass;
h,  enthalpy per unit mass;
k, permeability;
k. relative permeability;
L, length of porous bed;

p, pressure;

p*, inlet pressure;

S, saturation;

t, time;

u,  apparent speed:

x,  position coordinate in direction of flow;
g,  porosity;

i, viscosity;

u*, viscosity of air at ambient temperature ;

p,  density.

Dimensionless quantities
P, dimensionless pressure, p/p*;
X, dimensionless position x/L;
6,  similarity variable, X/2./7;
17,  dimensionless time, kp*t/eu* I2.

+ Work performed under the auspices of the U.S. Atomic
Energy Commission,

1 Present address: Department of Mechanical and
Industrial Engineering, University of Illinois at Urbana-
Champaign. Urbuna, Illinois 61801, U.S.A.

Subscripts
a, air;
I, liquid;
m, air-water vapor mixture;
s, solid;
o, water vapor;
0, air at ambient conditions.

INTRODUCTION

THE cAviTY formed by an underground nuclear
explosion ceases growing about a tenth of a
second after the explosion. The vapor in the
cavity consists predominately of a mixture of
rock gas and steam at a temperature of a few
thousand degrees Kelvin and a pressure near the
overburden pressure. The cavity gas ordinarily
remains at temperatures and pressures of this
magnitude until collapse of the cavity, which
usually occurs after several minutes, During this
period, should the cavity gas have access to
either the porous medium surrounding the
cavity or the stemming column, the gas will flow
into the porous material. The purpose of this
paper is to present the results of analysis of
such a transient multiphase multicomponent
flow.
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FORMULATION OF THE PROBLEM

In recent years, the analysis of transient
multiphase flow in porous media has received
considerable attention. The subject has been of
particular interest to the petroleum industry
because of its importance to the secondary
recovery of petroleum. As a result, most of the
available literature on such flows, e.g. [1-12],
deals with conditions that may be found in
petroleum reservoirs. Multiphase flow resulting
from an underground nuclear explosion, how-
ever, passes through considerably larger ranges
of temperature and pressure. Consequently,
assumptions in these studies usually prohibit
their application to the problem of interest here.
For example, the fluids are ordinarily considered
incompressible [1-4] or barotropic [5-10].
Although such restrictive assumptions are not
made in [11, 12], the formulation of the first
law of thermodynamics is in error in both cases.

The flow will be assumed to be a two-phase
two-component flow. When applying the
analysis to flow of the cavity gas, the two
components are taken to be air and water. Air is
initially present in the porous medium. The gas
flowing from the cavity is predominantly steam.
Because the temperature of the gas entering the
porous medium is considerably higher than the
ambient temperature of the medium, conden-
sation will occur and a two-phase flow results.

The equations governing this flow may be
formulated in a straight forward manner. The
equations will be written for a one-dimensional
flow, the extension to more dimensions being
obvious.

Conservation of mass is expressed by a
continuity equation for each component. For
air, this equation is

d d

a—x(paum) + 8’6';(pasm) =0. (1)
Here, air is assumed to be present only in the
vapor phase. Any air dissolved in the liquid
phase is negligible. x is the distance in the
direction of flow from the surface of the porous
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medium. ¢ is the time. p, is the mass density of the
air. u,, is the apparent velocity, i.e. volume flow
rate/unit area normal to flow, of the mixture
of air and water vapor. The two phases will
ordinarily have different apparent velocities.
S, is the saturation of the vapor phase. The
saturation of a phase is the void volume fraction
occupied by that phase.
The corresponding equation for water is

0 0
a‘plul + pvum) + sé_t(plsl + vam) =0. (2)

The additional terms result from the presence of
water in both phases. The subscript ! refers to
the liquid and the subscript v refers to water
vapor. The air and water vapor have the same
apparent velocity, diffusion being neglected.

The flow results from the pressure gradient
in the medium. Flow due to gravity is not
considered. For sufficiently small Reynolds
numbers, so that inertial effects are negligible,
the apparent velocity of a phase will be given by
Darcy’s law with the permeability reduced by
the presence of the other phase.

k,k ép
w=- H é; 3
Uy = — k,,,,ki[z. (4)
Hm OX

A characteristic Reynolds number for this flow
is calculated later.

The reduction in permeability is expressed by
use of the relative permeability. k,, and k., are
the relative permeabilities of the liquid and the
vapor mixture, respectively. The relative perme-
ability of a phase is the ratio of the effective
permeability for the phase to the absolute
permeability, k, of the medium. Although not
strictly functions of saturation only, the relative
permeabilities depend most strongly on
saturation and are ordinarily taken to depend
only on saturation. The functional form of the
dependence is different for the two phases
because of the wetting of the liquid phase.
u and p are viscosity and pressure respectively.
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For an isothermal flow, these equations,
together with state and transport property
relations and the initial and boundary conditions,
would be sufficient to describe the flow. A
noncondensible gas flow, under the conditions
considered here, could be treated as isothermal
with very little loss of accuracy. The temperature
of the incoming gas from the cavity is very much
larger than the initial temperature of the porous
medium. As the gas flows, the temperature at any
location in the medium will rise. However,
before this change in temperature can become
appreciable at a position, the mass of gas
passing that position must be of a magnitude
near to the mass of the solid lying between that
position and the inlet. Consequently, for non-
condensible gas flow, the time required to
produce significant changes in the temperature
is extremely long compared to the time in
which changes in pressure become significant.
This gas flow is, for all practical purposes,
isothermal, since the gas rapidly comes to the
bed temperature. Morrison [13] has analyzed
transient ideal gas flow under these conditions.

In the flow of interest here, however, con-
densation will occur. The temperature in the
porous medium will rise more rapidly as a
result. Moreover, the partial pressure of the
water vapor cannot exceed the saturation
pressure at the local temperature. Until the
temperature at a position begins to change
significantly, the steam will exert little pressure
there. We conclude that, in this case, the local
temperature and fluid pressure will begin to
change rapidly at the same time and that this
change will result from local condensation of the
steam.

In order to describe this flow, it is necessary
to apply the first law of thermodynamics.
Because the response time for local heat transfer
from the fluid to the solid grains is several orders
of magnitude smaller than the times of interest,
this response time may be neglected. Thus, the
fluid and solid temperatures are assumed equal.
This condition of local thermodynamic equili-
brium simplifies the formulation of first law,
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avoids ambiguities in the designation of local
temperatures, and makes a model for heat
transfer between fluid and solid superfluous.
The assumption of temperature equality is
common in analysis of flows through beds of
small particles, e.g. vid. [11-15].

For an elemental slab with surfaces normal to
the direction of flow, the first law is written

0
é;(plulhl + pvumhv + paumha)
d
+ 35}([’15191 + posmev + pnsmen)

Oe,

+(1 s)p,at =0. (5
e and h are the internal energy and enthalpy per
unit mass, respectively. The subscript s refers
to the solid. Changes in kinetic energy are
neglected in agreement with the low Reynolds
number restriction implicit in the use of Darcy’s
law. Conduction of heat through the bed is
neglected in comparison to the heat transfer by
the motion of the fluid. This, too, is a frequently
used assumption in the analysis of flow through
porous media [16, 17]. The thermal conductivity
of unconsolidated sand [18] is sufficiently small
that this mechanism of heat transfer becomes
important only after long times as the rate of
fluid flow decreases.

Defining a few dimensionless quantities
facilitates the numerical solution of these
equations and permits easy comparison of the
results with results of corresponding ideal gas
flows. Accordingly, we define a dimensionless
position,

X =x/L (6)

a dimensionless pressure,
P =p/p* M

and a dimensionless time
T = kp*t/eu*?. (8

Lis the length of the bed. p* is the highest
pressure at the inlet (simply the inlet pressure
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for the step change boundary condition
employed here) and p* is the viscosity of the air
in the medium at ambient conditions. If the
permeability and porosity of the medium are
not uniform and constant, then reference values
of these properties should also be used. We will
not consider such variations here. The difference
between the definition of v used here and that
used in [13] is small when the inlet pressure is
large. Results of the two analyses may be readily
compared.

Elimination of the apparent velocities from
the continuity equations and the first law is
accomplished by substitution of the two Darcy’s
law expressions into these equations. With these
substitutions, we obtain relations that contain
only thermodynamic and transport properties
as dependent variables. Making these substitu-

tions and introducing the dimensionless
variables, we obtain for air continuity,
Pakrmit™ OPY _
S 9
ax( X ( w (9)

for water continuity
0 [ (oknas*  pokomit® ) aP]
aX Hy Hm aX

8
= 'a—T(plS! + PoSm)
G,

oP
X
1—-¢
A (_8_ PsCs + plslel

= ot
+ poSme, + paS,,,ea). (11

(10)

and for the first law

d pihkp*
— N, .,
ax{[ " +(p +pa)

Equations(9)—(11) govern the one-dimensional
transient two-phase two-component flow
through a finite porous bed with uniform
permeability and porosity. Initial conditions,
boundary conditions, state and transport pro-
perties remain to be specified.

Boundary conditions at the inlet to the porous
medium are given by the state of the gas within
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the cavity. In an underground nuclear experi-
ment, the cavity pressure attains a value near the
overburden pressure after cessation of cavity
growth. The temperature in the cavity is of the
order of a few thousand degrees Kelvin. Cavity
conditions then ordinarily change slowly until
the collapse of the cavity. Cavity collapse may
occur several minutes after the detonation.
Olsen [19] describes the cavity pressure and
temperature history resulting from an under-
ground nuclear experiment in alluvium.

It is convenient to consider idealized boundary
conditions corresponding to step changes of
cavity temperature and pressure to constant
values. Results of flow calculations, using step
change boundary conditions, can be presented
in a particularly simple and useful form. The
advantage extends until such time as significant
property changes begin to occur near the other
end of the porous medium.

It we restrict our attention to those times
when the effects of flow from the cavity cause
only insignificant changes at the far boundary,
thefar boundary may be removed and the porous
medium considered to be semi-infinite. The time
during which the effect of a distant boundary is
negligible may be easily estimated from the
resulting calculations. A numerical example is
presented later.

The advantage of considering flow in a semi-
infinite medium resulting from a step change in
the inlet conditions is due to the existence of a
similar solution. Defining a dimensionless

variable
X x\/ eu*)
= =)/ | — 12
0 2./t 2 (kp*t (12)

we find that the partial differential equations
(9)-(11) describing the flow may be written as
ordinary differential equations in the indepen-
dent variable, 6. The only restriction is that all
dependent variables must be functions solely of
the local thermodynamic state. No property
may be taken, a priori, to have an explicit
dependence on either position or time. In terms
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of the similarity variable, equations (9)}-(11)
then become

pakrmp* AP
dG( de) 29d9("“s"')‘

Hm
i pik.p* + Pokrmit™* >dP
dé t Hm ) 40

(13)

d
+20—(pS; + pSw) =0 (14)
do
and
chtkrlﬂ ,,,u dP
d
+ 208—‘6 ( + p,S’el
+ pvsmev + pasmen) =0 (15)
respectively.

Boundary conditions at the cavity-medium
interface correspond to conditions at § equal to
zero. Only step change boundary conditions
may be expressed in this manner. A similar
solution does not exist for less idealized cavity
conditions. In those cases, the local thermo-
dynamic state in the medium is not a function of
the single variable, 6, but depends on position
and time separately.

Initial conditions in the medium correspond
to conditions as 6 goes to infinity. Only uniform
initial conditions in a semi-infinite medium may
be so expressed. Note that the length of the bed,
present in the definitions, (6) and (8), of dimen-
sionless position and time, does not appear in
the definition (12) of 6. Because the changes of
state become quite small for sufficiently large
finite values of 6, the results may be applied to
flow in finite beds for significant periods of time.

The solution of the governing set of equations,
(9)11) or (13)(15), is best accomplished by the
use of numerical techniques. One may readily
demonstrate that a non-trivial closed form
analytical solution in terms of well-tabulated
functions does not exist. If we consider only the
relatively simple special case of isothermal ideal
gas, then the flow is governed by equation (13)

2335

alone since no water is present and the tem-
perature is constant. In this limiting case,
equation (13) can be considerably simplified.
With only a single phasé present, the relative per-
meability and saturation are each unity. When
the temperature is constant and no water vapor
is present, u,, is everywhere equal to u*. Finally,
the air density is proportional to the pressure

and equation (13) reduces to
d [ _dP dpP
de (P d6> 039 = (16)

Using the integral transformation of von Mises
[20], this equation may be transformed to
Blasius equation. Because we obtain Blasius
equation in this limiting case, we verify that
closed form solutions may not be obtained for
the flows governed by equations (13)-(15).

NUMERICAL SOLUTION

The existence of a similar solution does not
imply that the ordinary differential equations
in the similarity variable are easier to solve
numerically than the partial differential
equations which have position and time as
independent variables. Because any advantage
in numerically solving the ordinary differential
equations is not apparent, and because a
programtosolvethe partial differential equations
can be used under less restrictive conditions, a
program was written to solve the partial
differential equations (9)-(11). Results of cal-
culations using this program may be presented
in the similar form simply by using the value of
0 corresponding to the values of X and . The
program is explicit and self-starting. The finite
difference expressions employed have truncation
errors of the order of the step size. Use of higher
order expressions results in the appearance of a
Gibbs phenomenon because of shocklike features
of the flow.

The solution of equations (9)}(11) is ac-
complished by first calculating the finite
difference approximations of the derivatives on
the left hand sides of these equations. The
equations are then numerically integrated in
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time for one time step. This yields values of the
three quantities in parentheses on the right hand
sides of equations (9)<(11) at the next discrete
value of time. In accordance with Gibbs’ phase
rule, three such quantities are necessary and
sufficient information to determine the state of
the mixture, including the amounts of water
present as liquid and as vapor.

If the water present at a location is a super-
heated vapor, then the expressions for the three
calculated quantities are significantly simplified
by setting the water saturation and vapor mixture
saturation equal to zero and one, respectively.
Determination of the state is then straight-
forward. If the calculated values of the three
quantities are inconsistent with a superheated
water state, the system contains a mixture of
saturated liquid and saturated vapor. The state
is then determined iteratively by using successive
linear interpolation to find the temperature.
Saturation properties, the relations for air and
solid internal energies, and the quantity deter-
mined from equation (9) are substituted into the
expressions for the quantities that were found by
integration of equations (10) and (11). Two
estimates of the water saturation result. The
iteration proceeds toward the temperature at
which the water saturation estimates agree,
yielding the state of the system.

Subsidiary equations to calculate state and
transport properties must also be used. Air is
considered to be an ideal gas with a variable
specific heat. The viscosity of air is considered
to be a function only of temperature and is
calculated using an empirical correlation given
by Hilsenrath and Touloukian [21].

Because of limitations on computation time,
the model for water properties is simpler, but
less accurate, than other formulations, e.g. [22],
generally available. The pressure of saturated
vapor is calculated using the relation of Keenan
et al. [23]. The vapor is assumed to obey
Clausius equation of state. The constant in the
Clausius equation of state is chosen so that
calculated values of the density of saturated
vapor agree well with tabulated values. The
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agreement, of course, is poor in the neighborhood
of the critical point. A relation given by Keenan
and Keyes [24] is used to determine the density
of saturated liquid. Variable specific heats are
used for liquid and vapor. The viscosities of
liquid water and steam are taken to be functions
only of temperature. The viscosity of the liquid
is very accurately represented in the temperature
range of interest by taking this viscosity to be
proportional to the inverse Celsius temperature.
The empirical correlation of Hilsenrath and
Touloukian [21] for steam viscosity is used.
Note that the value 33-15 appearing in the
correlation in [21] is a misprint and should
read 3315-0.

The porous medium is considered incom-
pressible withconstant specificheat, permeability
and porosity. The viscosity of the air-water
vapor mixture is calculated from the viscosities,
molecular weights and mole fractions of the
two species. The relation for the mixture
viscosity is due to Wilke [25].

The relative permeabilities of the liquid and
vapor phases are calculated using relations
proposed by Wyllie and Gardner [26] for liquid
and gas flow in porous materials. The relations
of Wyllie and Gardner have been simplified by
assuming constant capillary pressure. The
relative permeabilities are taken to be functions
only of saturation. When, because of evaporation.
the water saturation becomes less than the
“irreducible” water saturation, the relative
permeabilities of the liquid and vapor phases are
taken to be zero and one, respectively. The
resulting relative permeability curves lie within
the broad band of experimental results given by
Wryckoff and Botset [27] for flow of gas-liquid
mixtures through unconsolidated sand.

RESULTS OF SAMPLE CALCULATION

As an example of the type of flow that would
result from an underground nuclear detonation.
we may consider idealized cavity conditions
based on the measurements of Olsen [19]. The
cavity pressure is taken to be a suddenly applied
constant pressure of 45 bars. The cavity tem-
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perature is taken to be 1710°K. These values are
in good agreement with values deduced for the
Rainier event from examination of core samples
[28]. Water in the cavity is superheated under
these conditions. Since any rock vapor will
rapidly condense, the gas in the cavity may be
considered to be predominately steam. In the
example, the assumed cavity gas composition is
909, steam and 109 air by mass.

The initial temperature of the porous medium
is chosen to be 310°K. The porosity of the
medium is 0-35 and the medium is assumed to be
initially dry.

The results of numerical calculations of flow
under these conditions are shown in Figs. 1-4.
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Fi1G. 1. Pressure distribution in infinite medium.

The abscissae of Figs. 1-3 have identical scales.
These figures show the nature of the flow in the
region where effects of condensation, evapora-
tion and multiphase flow are important. Figure 4
shows the pressure distribution over a larger
range and, for comparison, shows results of
calculations for isothermal ideal gas flows.
Further discussion of Fig. 4 is deferred until
consideration of Figs. 1-3 is completed.

The nature of the flow in the region where the
presence of water is important is perhaps best
perceived by simultaneously considering Figs.
1-3, which show pressure and partial pressure,
water saturation, and temperature distributions,
respectively, Since the properties are shown as
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functions of the similarity variable, 6, these
curves represent the spatial distributions of
these properties at any time. Given a time, the
scale of the abscissae may be converted to the
corresponding linear scale showing distance
from the inlet. Values of position are determined
by reference to the definition of 8, equation (12).
Conversely, these figures may be used to show
the temporal variation of state at any given
location. This transformation is nonlinear as
equation (12) shows.

The flow may be characterized as having
several distinct regimes. Nearest the inlet to the
porous bed, the water exists as a superheated
vapor. In the example shown, this regime
extends from the inlet, where 8 is equal to zero, to
a value of 6 roughly equal to 0-02. Because no
liquid is present, the water saturation, shown in
Fig. 2, is zero here. The decrease in total pressure
and partial pressure, as seen in Fig. 1, is ac-
companied by the decrease in temperature
shown in Fig. 3.

The flow then enters a second regime where a
mixture of liquid and water vapor is present.
The temperature is relatively constant through
most of this regime, changing slowly in the
region bounded by 6 equal to 0-02 and 0-06.
Changes in the partial pressure of the water
vapor here correspond to changes of the
saturation pressure with temperature. The
change in total pressure is largely determined by
the change of the water vapor pressure. The
water saturation changes relatively slowly
through most of this region. The positive slope of
the water saturation curve indicates that the
fractional pore volume occupied by liquid at a
bed position in this region decreases with time
due to evaporation and the flow of liquid
towards regions of lower pressure.

From 6 approximately equal to 0-06 to 6
nearly equal to 0-08, the temperature of the bed
again decreases rapidly with distance from the
inlet. At 8 near 0-08, the temperature is essentially
the initial bed temperature. The increase in
temperature with time at a bed location in
this region is due to the motion of liquid
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and condensation of the vapor. The vapor
condenses rapidly as it enters this cooler
region. The appearance of a sharp conden-
sation front or water saturation front, as
in Fig. 2, is commonly encountered in the steam
or water flooding of petroleum reservoirs, e.g.
vid. [29]. After this sudden appearance of liquid
at a location producing a high water saturation,
the water saturation then decreases with in-
creasing time (or decreasing 6). The rate of
decrease is more rapid here than in the region
where 0 ranges from 002 to 006 because of
the large relative permeability of the liquid in
this range of water saturation. The rapid change
in the vapor pressure, shown in Fig. 1, resuits
from the temperature change. The vapor pressure
does not vanish near the front of this region but
has values corresponding to the saturation
pressures at temperatures near ambient.
Beyond the water saturation front, # greater
than about 0-08, no liquid exists. Water, in small
amounts, exists beyond this point as superheated
vapor. The flow is almost entirely a flow of air.
The heat capacity of the air is insufficient for air
flow to cause significant changes in the local
temperature. Consequently, the flow is, in
essence, an isothermal ideal gas flow of air at the
initial temperature of the porous medium.
Referring now to Fig. 4, the pressure distribution
of the multiphase flow described here is shown
in dimensionless form. The saturation front is
located at the near discontinuity in the pressure
gradient. The pressure drop in the regime of
isothermal gas flow is very gradual compared
to that in the two-phase regime preceeding it.
For ready comparison of the multiphase flow
calculations with calculations based on an
isothermal ideal gas model, the dimensionless
pressure distributions for two isothermal ideal
gas flows are also shown in Fig. 4. These flows
correspond to ratios of inlet pressure to ambient
pressure, N, of infinity and 45. Transient iso-
thermal gas flow under these conditions was
analyzed in [13], where a slightly different
definition of 9 is used. Because of the absence of
condensation, these gas flows propagate more
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rapidly than the multiphase flow. Because the
isothermal ideal gas calculations are much
faster than the multiphase calculations, the ideal
gas model provides a convenient means of
rapidly determining a bound for the flow into
the porous medium.

The “interface location” whose position is
noted on Fig. 4 is the position of the interface
between gas from the cavity and gas originally
in the bed when a piston-like displacement is
posited. The location is determined by a mass
balance. The analysis providing a simple means
of finding the interface location is given in the
following section. The interface for the infinite
pressure ratio isothermal ideal gas flow is
located at 8 equal to 0-81 where the dimension-
less pressure goes abruptly to zero.

As an example of the application of these
analyses, let us predict the actual times and
distances associated with certain occurrences.
The infinite pressure ratio ideal gas analysis
predicts the effects of the flow to extend up to 8
equal to (-81. The muitiphase flow considered
here has the water saturation front near 8 equal
to 0-08. Referring to the definition (12) of 6,
choose ¢ to be 0-35, p* to be 45 bars, and u* to be
189 uP as in the multiphase flow computations.
Further select a permeability, k, of one darcy
(1darcy = 98 x 10~° cm?), typical of stemming
materials used in these tests. Substitution into
equation (12) then gives the distance of the water
saturation front from the cavity as 1m, 3-2m,
and 25m at times of 1min, 10min and 10h,
respectively. At these same times, 6§ equal to 0-81
corresponds to distances of roughly 10m, 32 m
and 250 m.

While no single Reynolds number describes
this flow, it is worthwhile to determine the
Reynolds number in at least one instance so as to
indicate the range of Reynolds number. The
Reynolds number based on particle diameter
can be readily calculated for the gas flow near
the saturation front as an example. Taking a
particle diameter of 1 mm, characteristic of
stemming material, this Reynolds number is
found to be approximately 0-5 when the front
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is 1 m from the cavity. This corresponds to a
time of 1 min, For longer times, the Reynolds
number at this saturation front will be smaller.
For shorter times, the Reynolds number will of
course be much larger. High Reynolds number
effects are confined to small times and distances
compared to those of interest.

EXTENT OF PENETRATION

The extent of cavity gas penetration into the
porous medium is a matter of considerable
interest. Fluid from the cavity clearly extends
beyond the saturation front since all of the
water was initially in the cavity. The extent to
which air from the cavity has traveled is less
obvious. The air in the medium consists of air
initially in the medium as well as air that
entered from the cavity. The flow will result in
some mixing of these gases because of dead
spaces, non-uniform velocity distribution across
open areas, the distribution of path lengths, etc.
Danckwerts [30] has examined incompressible
flows with a distribution of residence times in
considerable detail.

If mixing may be neglected, then the gas from
the cavity will entirely displace the gas originally
in the bed. This model corresponds to a piston-
like displacement and is commonly used in the
analysis of flows through packed beds: Air from
the cavity would be separated from air initially
in the porous medium by an interface which
moves through the bed. The location of this
interface may be determined by a simple
extension of the method employed by the
author in [13]. Because of the presence of some
mixing, the interface location corresponds to a
lower bound for the distance from the inlet of
the leading gas originating in the cavity.

In the similarity analysis of [13], the interface
location is readily determined from the pressure
distribution because an isothermal flow is
barotropic. The local gas density and the
accumulated mass of gas in any region are
obtained directly from the pressure and its
spatial integral in that region. Although the
multiphase flow of interest here is not barotropic
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throughout, it becomes barotropic in the region
that is considered in finding the interface. This
region is that portion of the bed that lies ahead
of the water saturation front. As we have seen,
the interface location must lie in this region and
the flow there is, with considerable accuracy, an
isothermal flow of air.

As in [13], the interface location corresponds
to that bed position where the mass of air
originally lying closer to the inlet has been
added to the gas lying further from the inlet

a

§{ (p — po)edx = poex. (17
The subscript 0 denotes air at ambient
conditions.

Considering air as an ideal gas, and recogniz-
ing that the temperature beyond the interface is
constant and equal to theinitial bed temperature,
this relation may be written

[ (P — Po)df = Pyb. (18)
[:]
The definitions of dimensionless variables are
different from those used in [13].

Although equations (13){(15) are needed for a
complete description of the muitiphase flow,
equation (13) reduces to equation (16) and
equations (14) and (15) are identically satisfied
in the region beyond the interface. This simplifi-
cation results immediately from the constant
temperature and absence of water in that region.

Equation (16) is used to evaluate the integral
in equation (18) using substitutions analogous
to those of [13]. The interface location is again
found to be the position where

dP

— +20=0 19

%t 6 (19)
or

d?p

— = 0. 20

557 =0 (20)

The interface is located at the inflection point
of the pressure distribution curve as in Fig. 4.

FRANK A. MORRISON. JR.

CONCLUSIONS

Muitiphase multicomponent flow issuing from
a cavity following an underground nuclear
experiment has been investigated analytically.
A program was developed and results obtained
for the one-dimensional transient flow of air,
steam, and water through a uniform unfractured
porous medium. A numerical example, using
idealized but meaningful conditions, was
presented.

These results were compared with those
obtained from an isothermal ideal gas model and
reveal the extent to which such an isothermal
ideal gas model is conservative in containment
calculations.
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ECOULEMENT TRANSITOIRE A PLUSIEURS PHASES ET PLUSIEURS COMPOSANTS
DANS UN MILIEU POREUX

Résumé—On étudie analytiquement un écoulement transitoire unidirectionnsi biphasique et a4 deux
composants dans un milieu poreux. L'écoulement est décrit en utilisant une équation de continuité pour
chaque composant, une équation de quantité de mouvement pour chaque phase, la premiére loi de la
Thermodynamique, des équations d’états et des relations pour les propriétés de transport. On suppose
I'équilibre thermodynamique local et on inclue les effets de la condensation et de I'évaporation. L’analyse
montre que I'écoulement résuitant d’un changement échelon de I’état & la surface d’un milieu poreux
uniforme semi-infini peut 8tre décrit par une variable unique qui est une fonction simple de la position et
du temps. Dans d’autres conditions, position et temps peuvent étre spécifiés séparément pour déterminer
I’état du mélange. On donne des résultats de calculs applicables 4 I’écoulement des gaz qui succéde 4 une
explosion nuciéaire souterraine.

MEHRPHASIGE MEHRKOMPONENTEN-UBERGANGSTROMUNG IN
POROSEN MEDIEN

Zussmmenfassung—Eine eindimensionale, zweiphasige und aus zwei Komponenten zusammengesetzte
instationdire Stromung in einem pordsen Medium wird analytisch untersucht. Die Strémung wird durch
die Kontinuitdtsgleichung fiir jede einzelne Komponente, eine Momenten-Gleichung fiir jede Phase, den
ersten Hauptsatz der Thermodynamik, Zustandsgleichungen und Beziehungen zwischen den Transport-
grossen beschrieben. Ortliches thermodynamisches Gleichgewicht wird angenommen. Dic Effekte von

Kondensation und Verdampfung sind mit eingeschlossen.

Die Untersuchung zeigt, dass die aus einer schrittweisen Zustandsinderung an der Oberfliche eincs
homogencn, halbunendlichen por6sen Mediums resultierende Strémung durch eine einzige Variable
beschrieben werden kann, die eine einfache Funktion von Ort und Zeit ist.
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Unter anderen Bedingungen miissen Ort und Zeit getrennt bestimmt werden, um den Zustand des
Gemisches zu bestimmen. Die auf die Stromung von Gas in Kavernen als Folge einer unterirdischen
Atomexplosion anwendbaren Rechenergebnisse werden angegeben.

HECTALIMOHAPHOE MHOI'O®ASHUE MHOIOKOMIIOHEHTHOE
TEYEHUWE B ITOPUCTBIX CPEIAX

ArHoTAIAA—AHATMTHYECKN HCCIeNyeTcH OJHOMepHOe HecTalMoHapHoe OByX{asHoe TByX-
KOMIOHEHTHOE TeueHue B MOpHCTOH cpede. TeveHme OMNMCHIBAETCA C IIOMOIIBIO YDPABHEHHA
Hepa3pHBHOCTH TJIA KaAA0r0 KOMIOHEHTA, yPAaBHEHUA KOJIUYECTBA IBHKEHUA IJIA KaKZOH
$assl, NepBOr0 3aKOHA TEPMOTMHAMHKM, YDABHEHUN COCTOAHHA M COOTHOHIEHMIt 1A mepe-
HOCHHX cBoltcts. [Ipemmonaraercs I0KajbiOe TepMOIMHAMIUYECKOe paBHOBecHe. AHAIN3
LIOKa3BIBAELT, YTO TeyeHHe, BH3BAHHOE CKAYKOOGDA3HEIM N3MEHEHHeM COCTOAHHMA HA MOBEpX-
HOCTH OZHOPOAHOM TONyOeCKOHREYHON MOPUCTOH cpefsl, MOeT OLITL ONMUCAHO OIHOH nepe-
MeHHOt, ABAAWIENCA HpocToit PyHKIMeNl KOOPAMHAT U BpeMeHU. B Ipyrux yclaoBMAX 1A
ONMCAHUA COCTOAHUMA CMeCH HKOODAMHATY U BpeMA CIegyeT Onpeaenats OTAe.16HO. [Ipmso-
IATCA pe3yabTaThHl pacyeTa TeMEeHHA Tali B I0JOCTH, ABJAKIIErOCA CJEICTBUEM MMON3EMHOTO
ANEPHOTO B3pLIBA.



